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Abstract. Self-similar topology, which can be characterized as power law size distribution, has been found
in diverse tree networks ranging from river networks to taxonomic trees. In this study, we find that the
statistical self-similar topology is an inevitable consequence of any full binary tree organization. We show
this by coding a binary tree as a unique bifurcation string. This coding scheme allows us to investigate trees
over the realm from deterministic to entirely random trees. To obtain partial random trees, partial random
perturbation is added to the deterministic trees by an operator similar to that used in genetic algorithms.
Our analysis shows that the hierarchical density of binary trees is more diverse than has been described in
earlier studies. We find that the connectivity structure of river networks is far from strict self-similar trees.
On the other hand, organization of some social networks is close to deterministic supercritical trees.

PACS. 89.75.Da Systems obeying scaling laws – 89.75.Hc Networks and genealogical trees – 89.75.Fb
Structures and organization in complex systems – 05.45.Df Fractals

1 Introduction

The notion of self-similarity has significantly impacted
network studies over the broad range of disciplines such
as biology, chemistry, earth science, economics, engineer-
ing, hydrology, physics, and even sociology. Self-similar
features are found in most binary tree networks, that de-
velop in open dissipative systems [1], such as river net-
works [2], blood vessels [3,4], vascular organizations in
plants [5,6], agglomerates of charged metal particles in
castor oil [7], and even lightning [8], and have attracted
significant attention. The self-similar topology of binary
tree networks also serves as a motif of the organization
of general complex networks such as social networks. This
is because most complex networks have community struc-
ture, and they can be transformed into equivalent binary
tree networks as a result of the community organization [9,
10]. Recent studies reported that these transformed binary
trees also exhibit self-similarity [11,12].

Here, we may ask: why is statistical self-similar topol-
ogy found in such diverse binary tree networks? A corol-
lary to this question is: is there a unique connectivity
structure that gives rise to the statistical self-similarity?
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If that is the case, then there should also be a compara-
ble number of the other types of tree networks that are
clearly distinguished from trees of self-similar topology.
In this paper, we investigate this issue which leads to the
hypothesis that statistical self-similar topology is an in-
evitable characteristic that arises from almost any con-
nectivity structure of tree networks.

As a measure of self-similarity, we use the power law
tendency of (exceedance) size distributions [13–16], i.e.,

P (δ) ∝ δ−ε−1 and P (∆ ≥ δ) ∝ δ−ε (1)

identified as the probability and the exceedance probabil-
ity distribution, respectively, of the sub-tree size δ, over
an entire tree network. Interesting power law (exceedance)
size distributions have been found in river networks with
fairly constant exponents (ε = 0.43 ± 0.03) [14]. Various
social networks, when cast into equivalent binary tree net-
works using community organization, also exhibit power
law in their (exceedance) size distributions [11,12]. How-
ever, noticeable difference was found in their exponents ε.
Guimerà et al. [11] identified community structure of an
e-mail network of the University at Rovira i Virgili and
found that the transformed binary tree e-mail network
shows the power law exceedance size distribution with ex-
ponent ε = 0.48, a value interestingly close to that of river
networks. A power law size distribution with a similar ex-
ponent is also found in a transformed network of Jazz
musicians [12]. However, binary transformed networks of
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scientists exhibit power law exceedance size distributions
with exponents ε ≈ 1 [12], very different from that of river
networks.

These analyses of real networks motivate us to investi-
gate not only the power law itself but also the specific val-
ues of exponents ε. The exponent ε indicates the degree of
the density in hierarchical structure. Higher density char-
acterizes trees with higher number of edges closer to the
root node. The denser the hierarchy of a tree is (such as
strict self-similar tree), the steeper the (exceedance) size
distribution on a log-log scale, in turn resulting in greater
ε. The organization of binary trees that enables these in-
teresting observations in their (exceedance) size distribu-
tions, i.e., ubiquitous power law tendency with distinct
variation in exponents, remains unknown [11,12].

Recently, the density of hierarchical structure has been
actively studied but consistent conclusions are not made
yet. Based on the fitted exponents of observed binary trees
listed above, Arenas et al. [12] postulated the existence of
two distinct classes of binary trees based on their size dis-
tribution, i.e., one with ε ≈ 0.5 and the other with ε ≈ 1.
However, this empirical speculation is based on a limited
number of binary trees, therefore requiring further valida-
tion. On the other hand, Caldarelli et al. [17] argued that
any treelike representation should lead to ε ≈ 1. They ad-
mitted the occurrence of ε ≈ 0.5 found in some networks
listed above as exceptions but stressed that ε other than 1
and 0.5 cannot be found. However, their study is limited
to a specific class of trees, i.e., completely random trees.
It is important to note that studies on complex networks
show that most networks are subject to the organization,
which is neither purely ordered nor completely random
but somewhere in between [18]. The connectivity struc-
ture of these partially random tree networks, despite their
prevalence, has not been investigated.

In this paper, we study the connectivity structure of
various binary tree networks, ranging from determinis-
tic to entirely random, by investigating their power law
tendency in (exceedance) size distributions and the vari-
ation of the exponents. As a way to represent the struc-
ture of binary tree networks, we use a ‘bifurcation string’
approach which is analogous to former binary string ap-
proaches [19–21]. The bifurcation string is composed of
‘bifurcation indexes’, either 1 or 0, indicating if an edge in
a binary tree bifurcates or not as one moves from the root
node upstream. Similar to the DNA string in the chromo-
some, a unique bifurcation string contains sufficient infor-
mation to reproduce the topology of a given binary tree.

We investigate three types of bifurcation strings: de-
terministic strings, entirely random strings, and strings
intermediate between these two extremes. Deterministic
strings have strict regularity in the sequence of bifurcation
indexes. On the other hand, entirely random strings have
randomly generated bifurcation indexes. Since observed
networks are not limited to these two types, we also in-
vestigate the realm between these extremes. Strings in this
intermediate realm are generated by an operator similar to
that used in genetic algorithms. This enables us to draw
a map, which locates various binary trees with the cor-

responding characteristics (exceedance size distributions
in this paper), in a wide range of randomness from the
deterministic (where randomness is zero) to the entirely
random organizations. This provides a macroscopic view
since specific networks that have been the focus of earlier
studies are merely points in this map.

The rest of this paper is organized into four sections. In
Section 2, we clarify terminologies used in this study since
different (and often confusing) terminologies are used for
network studies in various disciplines. In Section 3, we in-
troduce the bifurcation string methodology devised for an-
alyzing binary tree networks and show its applicability for
ideal trees, i.e., entirely deterministic and entirely random
trees. The (exceedance) size distribution of binary trees
that partially contain random connectivity is discussed in
Section 4. The conclusions are given in Section 5.

2 Binary trees and size distributions

2.1 Network terminologies

Networks are composed of nodes, and edges that connect
the nodes. Defining a consecutive set of edges as a path,
a loop (or a cycle) is formed in the network if there is
more than one path between any two nodes. Based on the
existence of loops, networks can be divided into two types,
i.e., networks with and without loops. A loopless network
is also called a tree network or simply a tree.

In a tree, nodes are classified into three types: end-
nodes (leaf or terminal nodes), the root, and internal
nodes. The end-node has only one attached edge. The root
is an initially existing node from where the network starts
to expand. The other nodes are called internal nodes. For
convenience, we define the upstream and the downstream
as the directions toward the end-nodes and the root, re-
spectively. Nodes located at the upstream of a node are its
sub-nodes. The root has the greatest number of sub-nodes
in the network. Sub-nodes that are directly connected to
a node are called children (or offspring) of the node, and
the node is called their parent. Only a single edge exists
between a parent and its each child. The number of edges
between a node and the root along the path between these
two is the “generation” of the node.

End-nodes have zero children while the other nodes
have k children (k > 0). If k is at best two, the network is
often called the binary tree. A tree where k is constant is
called the ‘full tree’ and a tree with k fixed as two is called
the ‘full binary tree’ (Fig. 1). In this paper, we discuss
only the full binary tree. Various networks that develop in
open dissipative systems (examples listed in introduction)
are characterized as full binary trees if only junctions are
considered as internal nodes, which is the concept used in
the Horton-Strahler ordering scheme [22]. The ‘average’
number of children per node in a tree is termed as the
“branching ratio” Br [23]. Based on their branching ratio,
trees are classified [23] as subcritical (Br < 1), critical
(Br = 1), and supercritical (Br > 1) trees.
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(a) (b)

(c) (d)

Fig. 1. Examples of tree (loopless) networks. Black nodes are roots and white nodes are end-nodes or internal nodes. (a) A tree
network in which the number of children k for the root and internal nodes is fixed as four. (b) A tree network in which k is fixed
as two. This network is termed as a full binary tree. Stem-root structure of plants (in 2-D illustration) follows this topology.
(c) A modified binary tree shown in (b). Note that this is topologically equivalent to (b) following Shreve’s [28] definition. River
networks without delta formation follow this topology. (d) A mirror-imaged binary tree of (c). This is topologically distinct
from (b) and (c) following Shreve’s [28] definition.

2.2 Size distribution

The probability distributions of the sub-tree size, where
a sub-tree is defined as a portion of the entire tree with
any node being a root, have been used in characterizing
the topology of various tree networks. The ‘size’ δ refers
to either ‘load’ δl or ‘magnitude’ δm which are defined as
follows. Let us consider the flux of energy, information, or
matter over a tree network. Each node has its own ‘input’
(the quantity of energy, information, or matter), which
then flows downstream. The input can be the amount of
data packet in internet or the rainfall excess in river net-
works. The definition of input is limited to those given
from outside of the network and excludes those transferred
from other nodes.

The load δl of a node [24] is defined as the total amount
of inputs flowing out of the node. Therefore, δl is the sum
of inputs of all sub-nodes as well as that of the node itself.
The load of an end-node is the same as its input. The con-
cept of load is useful in analysis of networks whose nodes
have physical ‘inputs’, such as river networks. River net-
works are spanning trees and exactly embeddable in 2-D

lattice where the input is the rainfall excess and the load
of a node can be the amount of streamflow (precisely, di-
rect runoff) at the location. The load distribution P (δl) is
defined as the probability distribution that a node has a
certain load δl. Then, we can obtain its exceedance prob-
ability P (∆ ≥ δl).

The magnitude of a node δm is the total amount of
inputs that come from only end-nodes among the node
and its sub-nodes. This terminology is similar to that of
Shreve [19] for stream links. If the node itself is an end-
node, its magnitude is the same as its input. For nodes
other than the end-nodes, δm is the sum of inputs of end-
nodes upstream of the node. The difference between the
load and the magnitude is illustrated in Figure 2.

Topological organization of general complex networks
with loops can be simplified as binary trees by hierarchical
grouping of densely connected nodes (the procedure called
community identification) [9,10]. The concept of the mag-
nitude is used in analyzing such binary trees [11,12] in
which only end-nodes represent the nodes of the original
networks while all internal nodes and the root are dummy
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Fig. 2. Illustration to show the difference between the load
and the magnitude. In this example, the input for every node is
unity. The load (displayed inside each node) and the magnitude
(printed as italic at the side of each node) are counted for each
node in an example full binary tree.

nodes. Similar to the definition of P (δl) and P (∆ ≥ δl), we
can define the magnitude distribution P (δm) as the proba-
bility distribution that a node has a certain magnitude δm

and its exceedance probability distribution P (∆ ≥ δm).
Above definitions for the load δl and the magnitude

δm are general. Narrower definitions, which do not re-
quire the concept of the flux and the input, can be also
used: the load of a node is simply the number of all sub-
nodes as well as the node itself, and the magnitude is the
number of end-nodes upstream unless the node is an end-
node where δm = 1. These definitions are equivalent to
the general definitions under the case that the input for
every node is unity. This condition of spatially uniform
input is often assumed for river networks, where direct
runoff (the load) has been estimated from the contribut-
ing area under the assumption of spatially constant rain-
fall excess (the input). Since both the load and the mag-
nitude simply represent the size of a sub-tree under the
narrower definitions, we may call these as the size in a gen-
eral context (the way Guimerà et al. [11] used). Similarly,
P (δl) and P (δm) are simply called as size distributions
and P (∆ ≥ δl) and P (∆ ≥ δm) are called exceedance size
distributions. Size and exceedance size distributions can
be obtained by counting the number of nodes in the net-
work having δl load (N(δl)) or δm magnitude (N(δm)). In
this study, we follow this definition of size, i.e., the input
for every node is unity.

Note that, except for end-nodes, the load is greater
than the magnitude (Fig. 2). For example, if the input
for every node is unity, the maximum loads Ml (δl of the
root) of trees in Figures 1a and 1b are 29 and 35, re-
spectively. On the other hand, the maximum magnitudes
Mm (δm of the root) of the same trees are 22 and 18,
respectively. Nevertheless, this difference has little effect

on the exponents (ε) of power law (exceedance) size dis-
tributions. For a simple case that the input for every
node is unity, we can derive δl = 2δm − 1 for full binary
trees. If a load distribution follows P (δl) ∝ δl

−ε−1, then
P (δm) ∝ (2δm − 1)−ε−1. Inverse of this relationship also
holds, i.e., if P (δm) ∝ δm

−ε−1, then P (δl) ∝ (δl + 1)−ε−1.
Therefore, for δl (or δm) � 1, if one of the load and the
magnitude distributions follows a power law, the other
distribution also follows the power law with the same ex-
ponent value. Similarly, if either P (∆ ≥ δl) or P (∆ ≥ δm)
follows a power function, the other also follows the power
law with the same exponent ε. This property yields prac-
tical convenience: we need to analyze only one of either
the load or the magnitude. In this study, we only analyze
the load of theoretical trees and refer to this as the size.

Establishing an analytical derivation of power law size
distributions, observed in such diverse trees, has been
a challenging task. A popular approach for theoretical
analysis of binary tree topology is the systematic order-
ing of binary trees based on the Horton-Strahler ordering
scheme [22]. This scheme is originally devised for river net-
works but can be applied to any full binary tree [11,12].
Based on this ordering, the average load δω and the av-
erage number Nω of branches of order ω can be defined.
Well-known characteristics of these quantities observed in
river networks are Horton’s laws. They state nicely fitted
log-linear relationships of δω and Nω as functions of the
order ω, i.e., δω/δω−1 ≈ RA and Nω/Nω+1 ≈ RB where
constants RA and RB are Horton ratios [25,26].

For trees where Horton’s laws hold, we can show that
the load distributions follow exact power functions, and
exceedance load distributions are asymptotically power
functions (see Appendix A). As discussed above, these
can be generalized as power law (exceedance) size distri-
butions. In fact, it was shown that almost all randomly
generated full binary trees are subject to follow Horton’s
laws [27]. By combining these, we arrive at a conclusion
that the power law tendency in the (exceedance) size dis-
tribution is the inevitable result for almost any randomly
generated full binary tree.

However, this leaves two fundamental questions. First,
we need to know whether above argument shown for en-
tirely random trees can be generalized to other types of
trees, i.e., purely deterministic trees and partially random
trees. Second, organization of binary trees that yields var-
ious values of exponents fitted to the (exceedance) size
distribution is not clear yet. In the next sections, we will
show that answers to these two key questions are directly
related to each other. Specifically, we will use an algo-
rithmic approach to further confirm the inevitability of
self-similar topology and to investigate the connectivity
structure that yields variation in fitted exponents ε.

At this point, it is important to understand the limits
of both the (exceedance) size distribution and Horton ra-
tios in distinguishing trees of distinct topology. According
to Shreve [28], a network rotated in the plane perpendic-
ular to the projected plane either entirely or partially, is
topologically distinct from the original network. However,
the (exceedance) size distribution and Horton ratios can
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be the same for topologically distinct networks. Figures 1c
and 1d show examples of trees that are topologically dis-
tinct but have the same (exceedance) size distribution and
Horton ratios.

3 Bifurcation strings

To generalize the insight gained from the analytical study
in the previous section and to investigate the connectivity
structure that yields variation in fitted exponents of (ex-
ceedance) size distributions, we devise a simple algorithm
to generate and analyze full binary trees. The scope of
the proposed algorithm is the full tree, i.e., the number
of children for the root and internal nodes is fixed as a
constant k (examples shown in Fig. 1).

First, we define the ‘node index’ as the unique identi-
fication of each node. The index begins with one for the
root and is sequentially numbered according to the close-
ness to the root (e.g., Fig. 3). For nodes of the same gener-
ation, i.e., nodes located the same number of edges apart
from the root, the sequence proceeds from left to right
nodes under our convention that the root is oriented to
the top of the drawing. This satisfies Shreve’s [28] def-
inition of topologically distinct channel networks which
requires that node indexes for nodes of the same genera-
tion should be unique and should not be interchangeable
with other nodes of the same generation. However, the re-
sulting size distribution is invariant whether the sequence
proceeds from left to right nodes or vice versa.

Then, we pay attention to the fact that all nodes in the
full tree fall into one of two types depending on whether
they have sub-nodes. End-nodes are the nodes that do
not have sub-nodes. However, the root and internal nodes
have sub-nodes. This classification provides a basis for rep-
resenting the topology of full trees in a simple way. We
identify these two types by giving the ‘bifurcation index’
to each node. The bifurcation index is either 0 (to termi-
nate) or 1 (to bifurcate). If the bifurcation index is 0, the
node becomes an end-node. On the other hand, if the bi-
furcation index is 1, k edges, with a sub-node attached to
each, are stretched from the node. For a full tree to exist,
the root must have the bifurcation index 1. By definition,
internal nodes also have the bifurcation index 1.

We can list bifurcation indexes starting from the
root in the order of the node index, resulting in a
string called the ‘bifurcation string’. The bifurcation
string is similar to the DNA string in the chromo-
some, containing all necessary information to repro-
duce the topology of a full tree. For example, k =
4 and the bifurcation string 1;1010;10001100;000100000
000;0000 represents the tree network in Figure 1a, k =
2 and the bifurcation string 1;11;1111;10100101;0101
0000;1111;00000000 represents the tree networks in Fig-
ures 1b and 1c, and k = 2 and the bifurcation
string 1;11;1111;01011010;10100000;1111;00000000 repre-
sents the tree network in Figure 1d. Here ‘;’s are inserted
in the strings for convenience to distinguish different gen-
erations, but serve no other purpose since the knowledge
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6 7
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Fig. 3. An example of the strict self-similar binary
tree being represented as a completely bifurcating string
1;11;1111;00000000 which repeats a unit sub-string ‘1’ and
n1 = 23 − 1. The node index is displayed for each node. In
this example, Ml = 15, Mm = 8, N(δl = 1) = N(δm = 1) = 8,
N(δl = 3) = N(δm = 2) = 4, N(δl = 7) = N(δm = 4) = 2,
and N(δl = 15) = N(δm = 8) = 1.

of k is sufficient to identify the generation to which a par-
ticular digit belongs. Note that the number of digits of a
generation is exactly k times of the number of 1’s in the
previous generation. For full binary trees, if there are two
1’s in a generation, the next generation is composed of
four digits.

Similar binary string characterizations of full tree net-
works have been proposed [19–21]. However, the sequence
of binary indexes in their binary strings follows a specific
traverse direction around every path (called Lukasiewicz’s
convention). On the other hand, the proposed bifurcation
string is sequenced along the node index dependent on the
generation. In the following, we will show that this differ-
ence provides a new viewpoint in analyzing the full tree
networks.

It is simply impossible to analyze the size of an in-
finitely expanding tree. Defining the number of 1’s in a
bifurcation string as n1, for the full tree to be in a finite
size, the number of 0’s (n0) in the string must be:

n0 = (k − 1)n1 + 1, (2)

which is called the finite size constraint (FSC) in this
study. In the case of full binary tree (k = 2), this con-
straint means that n0 = n1 + 1.

In the following analyses for theoretical trees, we use
the narrower definition of size, i.e., the load δl is the num-
ber of all sub-nodes as well as the node itself, and the mag-
nitude δm is the number of end-nodes upstream unless the
node is an end-node where δm = 1. Without computing
the load and the magnitude for every node in a tree, the
maximum load Ml and magnitude Mm of a tree can be
directly obtained from the bifurcation string. Simply, Ml

is the number of total digits (= n0 + n1) and Mm is the
number of 0’s (= n0) in a bifurcation string.

Based on the sequence of bifurcation indexes, three
types of bifurcation strings exist: deterministic strings, en-
tirely random strings, and strings intermediate of these
two extremes. We first investigate topologies correspond-
ing to deterministic and entirely random strings. The in-
termediate realm will be covered in Section 4.
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3.1 Deterministic strings

Deterministic strings have strict regularity in their se-
quence of bifurcation indexes. One of the most evident reg-
ularity is the repetition. If a bifurcation string is composed
of the repetitive ‘unit sub-string’, we call this the ‘repeti-
tive string’, and the number of digits in the unit sub-string
is defined as the ‘period’. For example, 1;01;01;01;01;00 is
a repetitive string with a unit sub-string ‘01’ of period
two. The 1 at the first digit corresponds to the root and
the 0’s at the last generation are to meet the FSC. These
are not considered in the repetition. The number of 0’s
and 1’s in the unit sub-string are termed as ns0 and ns1,
respectively. Note that the sum of ns0 and ns1 is the pe-
riod and the condition ns0 ≤ ns1 is necessary for trees
to grow for more than two generations. Therefore, repeti-
tive strings can be grouped into two types: 1. strings with
ns0 < ns1 and 2. strings with ns0 = ns1. Each of these
types is discussed below.

Repetitive strings with ns0 < ns1, such as 1101101
101101000000 (with unit sub-strings ‘101’), have more
than two 0’s attached at the end of the string to meet
the FSC. The simplest of these kinds are strings com-
posed of the unit sub-string ‘1’ followed by n1 + 1 digits
of 0’s (FSC), e.g., 1;11;0000, which are called ‘completely
bifurcating strings’. The topology of the resulting tree is
the “complete binary tree” [29]. Especially, if n1 can be ex-
pressed as 2i−1 where i is a positive integer, the resulting
tree is the “perfect binary tree” [30] exhibiting the strict
self-similarity or scale-free property (Fig. 3). For perfect
binary trees, it is straightforward to show that their (ex-
ceedance) size distributions follow power law as:

P (δ) ∝ δ−1 and P (∆ ≥ δ) ∝ δ−1. (3)

Recall that the exponents of power law size distribution
and its exceedance distribution differ by unity in equa-
tion (1). Perfect binary trees are noticeable exceptions
from this rule by showing the same exponent for both
distributions (Eq. (3)). Complete binary trees, other than
the perfect binary trees, exhibit serrated pattern in their
P (δl) and P (δm) distributions. However, their exceedance
size distributions are very close to those of the perfect
binary trees.

Repetitive strings with ns0 = ns1 have periods of
even numbers and exhibit topology very different from
the topology of the previous case (ns0 < ns1). Examples
of unit sub-strings that compose these kinds of bifurca-
tion strings are as follows: ‘01’ and ‘10’ for the period
of two; ‘1100’, ‘0110’, and ‘1001’ for the period of four,
etc. Since ns0 = ns1, only two 0’s at the last generation
satisfy the FSC regardless of the length of the strings.
These strings such as 1;10;01;10;01;10;01;00 (with unit
sub-string ‘1001’) and 1;11;1000;11;1000;11;1000;00 (with
unit sub-string ‘111000’) repeatedly add ‘unit sub-trees’
to the original trees. The resulting tree looks like a back-
bone and this topology can be called ‘self-repetitive’, far
from self-similarity (Fig. 4). A repetition of a unit sub-
string of ns0 = ns1 increases δl and δm of all nodes along
the longest path in the original tree by a constant value.
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Fig. 4. Example binary trees generated by repetitive strings
with a unit sub-string ‘1001’ (ns0 = ns1 = 2, period=4). The
magnitude δm is displayed for each node. (a) A tree gener-
ated by a bifurcation string 1;10;01;10;01;10;01;00. (b) A tree
generated by a string 1;10;01;10;01;10;01;10;01;00 which is the
string of (a) with one more unit sub-string ‘1001’ added. Ad-
dition of a unit sub-string increases Mm from 8 to 10. We
compute the number of nodes having δm magnitude N(δm) for
(a) and (b). Except N(δm = 1), N(δm)’s are constant over
different δm, i.e., N(δm) = 1 for 2 ≤ δm ≤ 8 in (a) and for
2 ≤ δm ≤ 10 in (b). Consequently, for self-repetitive trees gen-
erated by these strings, P (δm) is constant, except P (δm = 1),
and its exceedance distribution P (∆ ≥ δm) is linear. Compar-
ison between (a) and (b) shows that this is valid regardless
of the length of the string. This is because a repetition of a
unit sub-string of ns0 = ns1 increases δm of all existing nodes
along the longest path by a constant value (in this illustra-
tion 2). Therefore, repetitive strings with ns0 = ns1, regardless
of their unit sub-string and length, are subject to follow con-
stant P (δm) and linear P (∆ ≥ δm). Similarly, the same can be
proven for their (exceedance) load distribution (constant P (δl)
and linear P (∆ ≥ δl)).

This means the uniform increase of size over most inter-
nal nodes and the root, which results in constant N(δl)
and N(δm) for different δl and δm except a few very small
δl and δm. This indicates constant P (δl) and P (δm) and
linear P (∆ ≥ δl) and P (∆ ≥ δm), far from the power law.

It is interesting to note that a completely bifurcating
string excluding ‘1’ and ‘00’ of the first and the last digits,
respectively (e.g., ‘1100’ in the string ‘1;11;0000’) can be
regarded as a unit sub-string of repetitive strings with
ns0 = ns1. Therefore, the size distributions of unit sub-
strings with ns0 = ns1 are close to those of completely
bifurcating strings, i.e., the power law. This provides the
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reason that P (∆ ≥ δl) and P (∆ ≥ δm) of self-repetitive
trees deviate from linear trend for very small (of the order
of the period of the string) δl and δm.

Above classification of repetitive strings based on ns0

and ns1 is interestingly related to the criticality of tree or-
ganization. For full trees generated by repetitive strings,
the branching ratio is computed as Br = kns1/(ns0+ns1).
Recall that k = 2 for full binary trees but the Br of full
binary trees is not necessarily 2 since Br is the average
value including end-nodes which have no children. How-
ever, the calculation of Br excludes the end-nodes at the
last generation which are artifact due to the FSC. Strings
with ns0 = ns1 exhibit Br = 1, i.e., critical trees. For ex-
ample, in trees of Figure 4, every alternate node has two
children and the others have no children, resulting in a
single child on the average. Therefore, self-repetitive trees
also can be called as ‘deterministic critical trees’. Com-
pletely bifurcating strings where ns0 = 0 and ns1 = 1
have Br = 2, i.e., each node has two children unless the
growth is interrupted to meet the FSC. Other repetitive
strings with ns0 < ns1 have Br between 1 and 2. Since
repetitive strings with ns0 < ns1 have Br always greater
than 1, we call the resulting trees as ‘deterministic super-
critical trees’.

Repeated computer simulations show that (ex-
ceedance) size distributions of strings with ns0 < ns1 are
also located between those of the completely bifurcating
strings (where P (∆ ≥ δ) ∝ δ−ε with ε ≈ 1) and those of
strings with ns0 = ns1 (where P (∆ ≥ δl) is linear), and
become close to the former as the Br increases toward 2
while close to the latter as the Br decreases toward 1
(Fig. 5). Recall that we consider repetitive strings only
with ns0 ≤ ns1. Strings with ns0 > ns1 show premature
growth, i.e., subcritical trees, which are hardly meaningful
in tree topology over space. Although there can be other
types of deterministic strings, our scope is limited to the
repetitive strings discussed so far, which have ‘uniform’
unit sub-strings.

3.2 Entirely random strings

In these strings, the bifurcation index of each digit is ran-
domly generated without any correlation with those of
the other digits. For each bifurcation index, we generate
a random number, between 0 and 1, following a uniform
distribution. Then we specify a threshold to round off the
random number into an integer, either 0 or 1. By adjusting
the threshold, we can generate various random bifurca-
tion strings with different Br. For example, the threshold
of 0.5 yields the same number of 0’s and 1’s on average
(n0 ≈ n1), i.e., ‘random critical trees’. If the threshold is
smaller than 0.5, then there are less 0’s than 1’s (n0 < n1)
followed by some number of 0’s to meet the FSC. The re-
sulting trees are ‘random supercritical trees’. Alternately
one may use the Bernoulli distribution to generate various
classes of random strings.

It had been analytically shown that the load distribu-
tions of random critical trees always follow the power law
with ε ≈ 0.5 [23]. For random supercritical trees, De Los
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Fig. 5. (Color online) Exceedance size distributions of deter-
ministic trees represented as repetitive strings with various
branching ratios Br. Legend shows unit sub-strings used in
this analysis and their corresponding Br. Exceedance size dis-
tributions P (∆ ≥ δl) of deterministic supercritical trees with
1 < Br < 2 are located between those of the strict self-similar
trees (Br = 2, P (∆ ≥ δl) ∝ δ−1

l ) and the self-repetitive trees
(Br = 1, P (∆ ≥ δl) = linear).

Rios [31] claimed that their load distributions follow the
power law with ε ≈ 1. Our repeated (100 times) computer
simulations show power law (exceedance) load distribu-
tions with ε = 0.52± 0.05 for random critical trees, which
agrees with [23]. However, for random supercritical trees,
fitted power functions to the (exceedance) load distribu-
tions exhibit a range of exponent ε, which differs from [31]
(Fig. 6). The fitted exponent ε averaged over 100 simula-
tions exhibits the clear trend related to Br as ε ≈ 1 for
Br = 1.8, ε ≈ 0.94 for Br = 1.4, ε ≈ 0.82 for Br = 1.2,
ε ≈ 0.67 for Br = 1.1, and ε ≈ 0.52 for Br = 1. This
shows that under the restriction of full binary trees, the
connectivity structures of random supercritical trees are
more diverse than previously thought. Previous studies
for random supercritical trees [31] have no constraint of
maximum two children per node, which allows denser hi-
erarchical structure, resulting in the exponent ε greater
than those reported in this study (Fig. 6).

4 Characteristic space-map

In the previous section, we explored tree topology re-
sulting from either deterministic or entirely random bi-
furcation strings. It is important to notice that observed
tree networks do not necessarily belong to these two ex-
treme classes. We may approach this issue from a broader
perspective of complex networks. Since randomness is
a prevailing property in nature, it is hardly possible
for networks to be purely ordered. On the other hand,
entirely random networks cannot capture the observed
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Fig. 6. (Color online) Exceedance size distributions of ran-
dom trees represented as entirely random strings with various
branching ratios Br. Each distribution is plotted for a ran-
domly selected tree among 100 realizations for a specific Br.
For random critical trees (Br = 1), ε ≈ 0.52. ε increases as Br

increases upto ε ≈ 1 when Br = 2.

clustering of nodes [18]. Therefore, most networks are sub-
ject to the organization, somewhere in between these two
extremes [18]. If this theory is applicable to full binary
trees which form a subset of general complex networks,
we postulate that organizations of the observed full bi-
nary trees, such as river networks and transformed social
networks [11,12], are located between deterministic binary
trees, such as the strict self-similar and the self-repetitive
trees, and entirely random binary trees. To verify this hy-
pothesis, we explore this intermediate realm.

Similar to an operator used in genetic algorithms [32],
we can generate bifurcation strings located in the realm
between the deterministic and the entirely random strings
by gradually switching bifurcation indexes of determinis-
tic strings with corresponding bifurcation indexes of en-
tirely random strings. The portion p of bifurcation indexes
to be switched among the total digit of a deterministic
string is called the ‘random-degree’ of generated bifurca-
tion strings. If random-degree p = 0, no bifurcation index
is subject to change, resulting in the deterministic string.
If p = 1, all bifurcation indexes are switched with those of
an entirely random string, resulting in the entirely random
string.

Binary trees located in the realm between an entirely
ordered and an entirely random binary tree can be repre-
sented as bifurcation strings with the random-degree be-
tween 0 and 1 given to the deterministic string for the
entirely ordered binary tree. For example, if p = 0.4 is
given to a deterministic bifurcation string of 1000 dig-
its, bifurcation indexes of randomly chosen 400 digits are
switched with the bifurcation indexes located at the cor-
responding 400 digits in the entirely random strings, while
the other 600 digits keep the same bifurcation indexes as
their original values (Fig. 7).

p=0

p=0.2

p=1

1 1 0 0 1 1 0 0 1 1 0 0 1 0 0

1 1 0 1 1 1 0 0 1 1 0 0 0 0 0

1 0 1 1 0 0 1 1 1 0 1 0 0 0 0

Fig. 7. An illustration of generating a bifurcation string with a
specific random-degree p. A deterministic (with unit sub-string
‘1001’) (p = 0) and an entirely random (p = 1) string of 15
digits are shown. To make a bifurcation string with p = 0.2, 3
out of 15 digits (15 × 0.2 = 3) are randomly selected (colored
black). The selected 3 bifurcation indexes of the deterministic
string are substituted with corresponding 3 bifurcation indexes
of the entirely random string. The resulting bifurcation string
is based on the deterministic string with unit sub-string ‘1001’
but contains random-degree p = 0.2.

We start from various deterministic strings with differ-
ent branching ratios Br and increase the random-degree
until p reaches 1 (the entirely random strings). For entirely
random strings, we choose only those for random critical
trees in this analysis. We analyze trees of fairly consis-
tent size (within ±1% of Ml = 32767 and Mm = 16384)
in a set of simulations. The size adopted here is similar
to that of theoretical trees analyzed by De Los Rios [31].
With given size, trees extend at least 14 (only one case of
a strict self-similar tree) and up to 16383 (self-repetitive
trees with certain unit sub-strings) generations. We also
implemented another set of simulations with smaller size
of trees (within ±1% of Ml = 4095 and Mm = 2048),
which is similar to the size of observed trees by Guimerà
et al. [11] and Arenas et al. [12]. Both sets of simulations
gave fundamentally same results and the results from the
greater size of trees are presented here. During this exper-
iment, we check how the (exceedance) size distributions
vary with p via their fitness to power law and, if they are
fitted to the power law, the variation of the exponents
(Figs. 8 and 9).

For all deterministic strings used as the basis of our
analysis, regardless of the random-degree p, the result-
ing trees almost always exhibit power law trend in their
(exceedance) size distributions (Fig. 8). This is espe-
cially interesting for self-repetitive trees, which have lin-
ear size distributions (Fig. 8b). Even very little random-
degree (e.g., p = 0.05) makes P (∆ ≥ δl) of self-repetitive
trees converge to the power law. The mechanism that
enables this sudden change of network topology can be
illustrated by comparing Figures 2 and 4b. If only one
bifurcation index (4th digit) of a bifurcation string for
Figure 4b is changed, the resulting bifurcation string is
1;10;11;1001;1001;1001;0000. Increased number of 0’s at
the last generation is to satisfy the FSC. The binary tree
generated by this string corresponds to that shown in Fig-
ure 2. Note that the difference of only one digit makes the
resulting topology very different.

The significance of the above result, i.e., the statistical
power law trend is found in most cases regardless of p, is
far reaching. This addresses an important notion that, if
we take the power law (exceedance) size distribution as
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Fig. 8. (Color online) Variation of exceedance size distribu-
tions along with random-degree p. Exceedance size distribu-
tions of trees based on (a) a strict self-similar tree (Br = 2)
and (b) a self-repetitive tree (Br = 1, with unit sub-string
‘01’) are shown. Each distribution is plotted for a randomly
selected tree among 30 realizations for each p value. Fitted
exponent ε, averaged over 30 simulations, is illustrated in Fig-
ure 9. (a) As p increases, the P (∆ ≥ δl) distribution keeps the
power law trends. The fitted exponent remains as ε ≈ 1 until p
gets close to 1. (b) As p increases, the linear exceedance distri-
bution P (∆ ≥ δl) of the original tree (p = 0) rapidly converges
to the power law.

an indicator of the statistical self-similarity, the statistical
self-similar topology is the inevitable consequence of any
full binary tree with few exceptions such as self-repetitive
trees. This generalizes the argument based on the analyt-
ical derivation discussed in Section 2.

In Figure 8, one may argue how strictly these (ex-
ceedance) size distributions follow power law. However,
it is worth noting that observed power law (exceedance)
size distributions, such as those of river and transformed
social networks, show similar behavior of statistical (in-
stead of strict) self-similarity [11,12,14]. They commonly

exhibit some deviations for low as well as high δ values
(finite size effect). Such deviations are also found even
in deterministic trees (Fig. 5) and entirely random trees
(Fig. 6).

Once we fit power functions to (exceedance) size distri-
butions, the exponent ε shows dependence on p (Fig. 9).
Curves which started from various deterministic strings
(with unit sub-strings shown in the figure legend) follow
clear trends converging around ε ≈ 0.52 at p = 1 (also
close to the theoretical value of ε = 0.5 [23]). This shows
a wide range of ε possible for various binary trees. This is
contradictory to earlier studies by Arenas et al. [12] who
postulated that binary trees belong to two distinct classes
based on their size distribution (i.e., one with ε ≈ 0.5 and
the other with ε ≈ 1) and Caldarelli et al. [17] who ar-
gued that any treelike representation should lead to ε ≈ 1
or rarely 0.5. Note that this study is the first work that
investigates the size distribution of trees over the whole
range from purely deterministic to entirely random. This
results in capturing much more variability in the degree
of ‘hierarchical density’, represented as ε, across infinite
number of theoretical binary trees than those of the pre-
vious studies [17,23,31], which were limited to the class
of entirely random trees. Magnitude distributions are very
close to those in Figure 9 due to the reason described in
Section 2.

At this point, it is worth thinking about the impli-
cation of Figure 9. Clear trends of the exponent ε in Fig-
ure 9 help us locate any binary tree if we know its ε. There
are several groups of binary trees whose ε is known. For
river networks, based on the observed ε = 0.43 ± 0.03,
Figure 9 indicates that their connectivity structure is far
from that of the strict self-similar trees. This is inter-
esting since evident statistical self-similarity of river net-
works easily tempts us to believe that the connectivity
structure of river networks is close to that of strict self-
similar trees with inherent randomness. However, as Fig-
ure 9 shows, trees generated by increasing random-degree
in strict self-similar trees never have ε below 0.5. Simi-
larly, some transformed social binary trees as a result of
community identification which have ε ≈ 0.5 also have
connectivity structure far from that of strict self-similar
trees. However, Figure 9 indicates that the connectivity
structure of other transformed binary trees which have
ε ≈ 1, such as scientists networks [12], may be close to
that of deterministic supercritical trees.

Figure 9 therefore provides a macroscopic perspective
regarding the range of possible binary trees. A specific
binary tree, such as a river network and a transformed
social network, is merely a point in the space of (p, ε).
Characteristics other than the hierarchical density (ε) can
also be used to illustrate such a space. Therefore, these
figures may be defined as the characteristic space-map.
This allows us to identify the key connectivity structure
of binary tree networks.

A noticeable finding on strict self-similar trees is that
they keep the original hierarchical density of ε ≈ 1 even
after 70% of their original string is randomized, indi-
cating strong robustness to random noises (Fig. 9). The



256 The European Physical Journal B

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

p

ε

 

 

1 (Br = 2)
101 (Br = 1.333)
11100 (Br = 1.2)
01 (Br = 1)
1100 (Br = 1)
111000 (Br = 1)

Fig. 9. (Color online) Characteristic space-map showing the variation of fitted exponent ε of power law exceedance load
distribution according to the random-degree p added in the deterministic strings. Averages over 30 simulations are shown.
Legend shows unit sub-strings of deterministic strings (p = 0) and their corresponding Br. Plots are shown only for ranges of
high fittness (correlation coefficient > 0.95 without higher order trend) to the power law. As p increases, ε of supercritical trees
decreases until ε ≈ 0.52 at p = 1. For strict self-similar trees, most variation of size distribution (ε) occurs only after p > 0.8.
In other words, strict self-similar trees keep the original value of ε ≈ 1 even after 70% of their original string is randomized,
indicating more robustness to the disorder (random noise) than other deterministic trees. The decreasing trend of ε begins at
less p for deterministic supercritical trees of smaller Br. Contrary to deterministic supercritical trees, ε of deterministic critical
(self-repetitive) trees slowly increases with p until ε ≈ 0.52 at p = 1. This trend of self-repetitive trees is more obvious for those
having bifurcation strings of longer period. Convergence to ε ≈ 0.52 is faster (occurs at less p) for self-repetitive trees than
deterministic supercritical trees.

underlying mechanism that enables such a strong abil-
ity in conserving the original signal remains to be seen.
This phenomena has potential usefulness in practical en-
gineering applications, which should be another subject of
future research. We also found that generally the power
law tendency is more evident in exceedance distributions
P (∆ ≥ δ) than P (δ) over the whole range from purely
deterministic to entirely random trees. This is not neces-
sarily consistent with Caldarelli et al. [17] who claimed
that if P (∆ ≥ δ) follows a power law, then P (δ) also
follows a power law. Note that the map in Figure 9 is
for trees between deterministic trees and random critical
trees. Simply because there are infinite full binary trees,
there should be other maps to cover other realms, e.g., the
realm between deterministic trees and random supercriti-
cal trees.

5 Conclusions

Understanding the topology of binary tree networks is im-
portant in that their topology serves as a motif for com-
plex networks and significantly affects flow through the
networks. We have devised a technique to represent the
tree topology as the bifurcation string and applied this
to special binary trees: deterministic supercritical (includ-

ing strict self-similar) trees, deterministic critical (self-
repetitive) trees, random supercritical trees, and random
critical trees. Then, we investigate trees located between
deterministic and entirely random trees. This is imple-
mented by giving varying random perturbation to basic
deterministic trees, using an operator similar to that used
in genetic algorithms. This analysis leads to the following
conclusions.

The power law (exceedance) size distribution, which
is found in almost every full binary tree in various disci-
plines, is the inevitable result of almost any full binary
tree organization. We show this through both a theoreti-
cal derivation and numerical simulations using bifurcation
strings. If we take the power law (exceedance) size distri-
bution as an indicator of the self-similarity, this leads to an
even more significant conclusion that the statistical self-
similar topology is an inevitable consequence of any full
binary tree organization.

Although the power law itself is inevitable, we show
that the fitted exponents (the hierarchical density) vary
with clear trends depending on the random-degree p in
tree topology. The resulting plot, called the characteris-
tic space-map, for the variation of the hierarchical density
as a function of given random-degree provides the macro-
scopic perspective regarding a range of possible binary
trees. The characteristic space-map for the hierarchical
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density helps explain connectivity structures of observed
self-similar trees with very different exponents ε. Some so-
cial networks with ε ≈ 1 are close to deterministic super-
critical trees with some randomness. On the other hand,
an e-mail network [11], a Jazz musician network [12], and
river networks, are far from strict self-similar trees. This
is surprising since evident self-similarity of these networks
easily drives us to assume that their connectivity structure
is close to strict self-similar trees with inherent random-
ness.

Wide and continuous range of exponents (mostly 0.4 ≤
ε ≤ 1), found in numerous theoretical full binary trees,
indicates the existence of more diverse hierarchical density
than previous thought [17,23,31]. We should therefore be
cautious of attempting to classify binary trees based on
hierarchical density of only a few observed trees. Observed
trees, other than full binary trees, still follow power law
size distributions [16,33] but without the constraint of full
binary tree the fitted exponents can exceed the range of
exponents analyzed in this study.

Self-similar topology has been understood as results
of evolutionary processes that pursue some form of op-
timization [7,16,34–41]. However, Paik and Kumar [42]
showed that inherent randomness is a sufficient condition
for the generation of tree patterns under the evolution-
ary dynamics. In addition to this finding on evolutionary
processes, present study shows that self-similar topology
is an inevitable consequence of any full binary tree orga-
nization. These findings lead to the conclusion that self-
similar patterns in nature are interesting but no specific
rules are required for generating such patterns. Explain-
ing such patterns based on certain global rules such as
optimality criteria may have limitations.

This research is supported by the National Science Foundation
(NSF) grant no. EAR 02-08009 and the University of Illinois
at Urbana-Champaign through the Dissertation Completion
Fellowship given to the first author. Any opinions, findings, and
conclusions or recommendations expressed in this publication
are those of the authors and do not necessarily reflect the views
of these funding agencies.

Appendix A: Power law size distributions
of trees following Horton’s laws

In this appendix, we show an analytical derivation of the
load distribution for trees that follow Horton’s laws. In a
tree network, the downstream end junction of an ω order
branch is defined as an ω order node. Horton’s laws state
the average load (the contributing area in river networks)
of ω order nodes as:

δω = δ1RA
ω−1, (4)

and the average number of ω order branches as:

Nω = RB
Ω−ω (5)

where Ω is the order of the root (the outlet in river net-
works). Constants RA and RB are the drainage area ratio

and the bifurcation ratio, respectively. Rearranging equa-
tion (4) for ω and substituting this into equation (5) yields:

Nω = R

(
Ω−1− ln δω−ln δ1

ln RA

)

B (6)

which can be written as:

ln Nω =
(

Ω − 1 − ln δω − ln δ1

ln RA

)
ln RB. (7)

Therefore, Nω follows a power function as:

Nω = [exp(Ω − 1)]ln RB
(
δω/δ1

)− ln RB
ln RA . (8)

Note that normalizing the equation above gives the load
distribution as:

P
(
δω

)
=

[exp (Ω − 1)]lnRB

δ
− ln RB

ln RA
1

∑Ω
i=1 N i

δ
− ln RB

ln RA
ω (9)

which is an exact power function with exponent ε =
lnRB

lnRA
− 1 (comparing with Eq. (1)). The exceedance load

distribution is obtained as:

P (∆ ≥ δω) =
[exp (Ω − 1)]lnRB

−εδ
−ε−1

1

∑Ω
i=1 N i

[δ−ε
Ω − δ

−ε

ω ] (10)

which is close to a power function. Therefore, if Horton’s
laws (Eqs. (4) and (5)) hold for a tree, the (exceedance)
size distribution of the tree is subject to follow power law.
Similar derivations are also given by Veitzer et al. [43]
from a different approach.
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